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Abstract
We define the labeled interleaving distance for labeled Reeb graphs (where all vertices are labeled
from a fixed set). We prove that the (ordinary) interleaving distance between Reeb graphs equals
the minimum of the labeled interleaving distance over all labelings. We also show that under mild
conditions, the labeled interleaving distance is a metric on the isomorphism classes of Reeb graphs.
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1 Introduction and Background

Reeb graphs are topological descriptors that capture topological changes of level sets of
scalar fields, with many applications in topological data analysis and visualization [1, 6].
Formally, a Reeb graph, denoted R = (G, f), is a finite multi-graph G equipped with a
function f : G → R such that the restriction of f on each edge is strictly monotone. It is
considered to be a continuous topological space in our setting.

Discriminatory distances for Reeb graphs such as the interleaving distance [2] are often
difficult to compute [6]. Recently, Munch and Stefanou [5] introduced a labeled interleaving
distance on merge trees with labeled vertices that can be computed in O(n2) (n being the
number of critical points of f). Gasparovic et al. [4] proved that the (ordinary) interleaving
distance of merge trees is the minimum of the labeled interleaving distance over all labelings.

In this work, we define a labeled interleaving distance for Reeb graphs, prove that it is a
metric on the isomorphism classes of Reeb graphs (under certain conditions on the labelings),
and that the (ordinary) interleaving distance is the minimum of the labeled interleaving
distance. In particular, our distance can be computed in O(n2) time for contour trees.

The ordinary interleaving distance is defined using the ε-smoothed Reeb graph [3] Rε,
i.e., the Reeb graph of G× [−ε, ε] together with a function inherited from π : G× [−ε, ε] → R.
See Fig. 1 for an example in which Rε is an ε-smoothed Reeb graph of R.

▶ Definition 1. Let R1 and R2 be Reeb graphs. An ε-interleaving between R1 and R2 is given

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Labeled Interleaving Distance for Reeb Graphs

by two morphisms, ϕ : R1 → Rε2, ψ : R2 → Rε1, such that the following diagram commutes,

R1 Rε1 R2ε
1

R2 Rε2 R2ε
2 .

η1

ϕ

ηε
1

ϕε

η2

ψ

ηε
2

ψε

The interleaving distance is defined to be

dI(R1, R2) := inf{ε ≥ 0 | there exists an ε-interleaving between R1 and R2}.

For a Reeb graph R and its node set V , we define a correspondence s : V → Rε on all
nodes in R. Intuitively, s maps a node in R to the point in Rε where it arrives after moving
up (for a split node) or down (for a join node) by ε.

2 Labeled Reeb Graphs and Their Distance

Given a finite label set L = [N ] := {1, . . . , N} and a Reeb graph R = (G, f) with the node
set V , a labeling of R is a function λ : L → V . We call the triple Rλ = (G, f, λ) an L-labeled
Reeb graph. Rλ is fully-labeled if λ is surjective. λ is not necessarily injective. A morphism
between labeled Reeb graphs is defined to be the morphism of the underlying unlabeled
Reeb graphs. We want to define a labeled ε-interleaving between two labeled Reeb graphs by
adding label-preserving properties to the ordinary ε-interleaving defined by the commutative
diagram in Def. 1. To do so, we first introduce an ε-path-neighborhood.

▶ Definition 2. Let a ∈ V (R) be a node in the Reeb graph R = (G, f). The ε-path-
neighborhood of a, denoted P ε(a), is π({a} × [−ε, ε]) ⊂ Rε in the ε-smoothed Reeb graph Rε.
π : G× [−ε, ε] → Rε is the quotient map. T ε(R) is G× [−ε, ε] with the product topology.

Figure 1 The ε-path-neighborhoods of a and b are highlighted in green and yellow in Rε.

As illustrated in Fig. 1, we observe that for any point x ∈ R and any ε ≥ 0, P ε(x) is a
monotonic path in Rε such that fε(P ε(x)) = [f(x) − ε, f(x) + ε)].

▶ Definition 3. Let R1,λ1 = (G1, f1, λ1) and R2,λ2 = (G2, f2, λ2) be two L-labeled Reeb
graphs, and let ε ≥ 0. We say a pair of morphisms ϕ : R1 → Rε2 and ψ : R2 → Rε1 define a
labeled ε-interleaving between R1,λ1 and R2,λ2 if the following hold:
1. ϕ and ψ define an ε-interleaving between R1 and R2.
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F. Lan, S. Parsa, and B. Wang 3

2. For each ℓ ∈ L, we have the following label-preserving properties,
ϕε(s(λ1(ℓ))) ∈ P ε(s(λ2(ℓ))),
ψε(s(λ2(ℓ))) ∈ P ε(s(λ1(ℓ))). (1)

In the above formulae, P ε(s(λ1(ℓ))) ⊂ R2ε
1 and P ε(s(λ2(ℓ))) ⊂ R2ε

2 , since s(λ1(l)) ∈ Rε1 and
s(λ2(l)) ∈ Rε2. The labeled interleaving distance dLI (R1,λ1 , R2,λ2) is defined as

inf{ε ≥ 0 | there exists a labeled ε-interleaving between R1,λ1 and R2,λ2 }. (2)

Fig. 2 illustrates an example for Def. 3 where R1,λ1 and R2,λ2 are labeled ε-interleaving. We
simplify the notations for node labels. We label nodes λ1(2) with 2, and s(λ1(2)) with s1(2).
Nodes with the same function value are assigned the same color. The highlighted areas
demonstrate the label-preserving properties in Eqn. (1). It follows from Def. 3 that for all
R1, R2, λ1, and λ2, dLI (R1,λ1 , R2,λ2) ≥ dI(R1, R2). If the label set L is empty, the labeled
interleaving distance equals the unlabeled one.

Figure 2 R1,λ1 and R2,λ2 are labeled ε-interleaving.

It turns out that the interleaving distance depends only on the topological features
significant enough with respect to ε. Therefore, we introduce the ε-essential and ε-inessential
nodes. Intuitively, we can disregard nodes connecting to small loops and short edges that do
not affect the labeled distance. We call a labeling an ε-essential labeling if every ε-essential
node is labeled. We consider all possible ε-essential labelings for the following theorem.
▶ Theorem 4. Let R1, R2 be Reeb graphs and set ε = dI(R1, R2). There exist a label set L
and ε-essential labelings λ1 and λ2 such that for L-labeled Reeb graphs R1,λ1 and R2,λ2 ,

dI(R1, R2) = dLI (R1,λ1 , R2,λ2).

3 Metric Properties

The labeled interleaving distance can be infinite when two nodes with the same label are
originally apart and move in opposite directions when smoothed, see Fig. 3 for an example.
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4 Labeled Interleaving Distance for Reeb Graphs

For a label set L, we denote the set of all L-labeled Reeb graphs by RL. We say two labeled
Reeb graphs R1,λ1 , R2,λ2 are consistently labeled if for each label ℓ ∈ L, the nodes v1 = λ1(ℓ)
and v2 = λ2(ℓ) move in the same direction when smoothed. A set of labeled Reeb graphs
R ⊂ RL is consistently labeled if each pair of labeled Reeb graphs in R are consistently
labeled. Under this condition, the labeled interleaving distance becomes an extended metric.

Figure 3 A pair of inconsistently labeled Reeb graphs

▶ Theorem 5. Let RL
c be a maximal set of isomorphism classes of consistently L-labeled

Reeb graphs. The labeled interleaving distance is an extended metric on RL
c .
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Abstract
Merge trees are a common topological descriptor for data with a hierarchical component. The
interleaving distance, in turn, is a common distance measure for comparing merge trees. In this
abstract, we introduce a form of ordered merge trees and extend the interleaving distance to a
measure that preserves orders. Exploiting the additional structure of ordered merge trees, we then
describe an O(n2) time algorithm that computes a 2-approximation of this new distance with an
additive term G that captures the maximum height differences of leaves of the input merge trees.
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1 Introduction

Merge trees [6] are a common tool in the field of topological data analysis. They are usually
defined on terrains, where they capture connected components of sublevel sets. More generally,
a merge tree represents some hierarchical structure in the data. Our work is motivated by
the study of braided rivers: multi-channel river systems, known to evolve rapidly [3, 5]. We
model a river network [4] as a hierarchy of braids, and use a merge tree to represent this
hierarchy: each leaf represents a single channel in the network, and each internal vertex
represents two braids merging (see Figure 1).
It is our goal to analyse the evolution of braided rivers over time. The standard way to
compare two merge trees is the interleaving distance [2, 6, 9]. However, the interleaving
distance has two main drawbacks. Firstly, the standard interleaving distance is unable to
capture any intrinsic order, e.g. from bank to bank in braided rivers, that might be present in
the data. Secondly, there is no known efficient algorithm to compute even an approximation
of the interleaving distance.1 To tackle both issues, we impose our merge trees with an

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 Agarwal et al. [1] actually prove that approximating the Gromov-Hausdorff distance with a factor better
than 3 is NP-hard. As many have observed, this proof also applies to the interleaving distance.
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2 An Interleaving Distance for Ordered Merge Trees

Figure 1 (Left) a braided river (Greg O’Beirne [8]). (Right) a river network as a merge tree.

additional structure, and introduce the monotone interleaving distance. Omitted proofs and
details can be found in the full version on arXiv.

2 Merge Trees and Interleavings

A merge tree is a pair (T, f), where T is a rooted tree and f : T → R ∪ {∞} is a continuous
height function that is increasing towards the root, with f(v) = ∞ if and only if v is the
root. Here, f is defined not only on the vertices of T , but also on the interior of the edges.
Consider two merge trees (T, f) and (T ′, f ′) and a fixed value δ ≥ 0. Morozov et al. [6]
define a δ-interleaving as a continuous mapping α from T to T ′ that sends points exactly δ

upwards, together with a similar map β from T ′ to T , such that both compositions of α and
β send any point to its unique ancestor 2δ higher. The interleaving distance dI is defined as
the smallest δ such that there exists a δ-interleaving. See Figure 2 for an example.

The maps α and β are both δ-shift maps, i.e. continuous maps that send points exactly
δ higher. Touli and Wang [9] give an alternative definition of the interleaving distance in
terms of a single δ-shift map with additional requirements. They call this map a δ-good map.
Gasparovich et al. [2] give another alternative definition in terms of labelled merge trees [7].
For n ≥ 0, we denote [n] := {1, . . . , n}. A labelled merge tree is a triple (T, f, π), where (T, f)
is a merge tree and π : [n] → T is a label-map that is surjective on the leaves of T . A labelled
merge tree naturally induces a matrix, defined by M(T, f, π)i,j = f(lca(π(i), π(j))). Here,
lca(·, ·) is the lowest common ancestor of a pair of points. For a matrix M , we consider the
ℓ∞-norm, defined as ∥M∥∞ := maxi,j |Mi,j |. Lastly, for two unlabelled merge trees (T, f) and
(T ′, f ′), a δ-labelling is defined as a pair (π, π′) such that ∥M(T, f, π) − M(T ′, f ′, π′)∥∞ = δ.

T T ′

x

x2δ

0

δ

2δ

y

y2δ

Figure 2 Two merge trees and part of a δ-interleaving.
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Figure 3 Parts of an optimal regular (left) and an optimal monotone (right) interleaving.

Imposing Orders. For a point x ∈ T with f(x) ≤ h, we denote by x|h the unique ancestor
of x at height h. An ordered merge tree (T, f, (≤h)h≥0) is a merge tree (T, f) equipped with
a set of total orders on the level sets of T , such that it is consistent. Formally, for two heights
h1 ≤ h2 and two points x1, x2 in f−1(h1), we require that x1 ≤h1 x2 implies x1|h2 ≤h2 x2|h2 .
We now define an order-preserving distance measure for ordered merge trees (T, f, (≤h)h≥0)
and (T ′, f ′, (≤′

h)h≥0). Specifically, we say a δ-shift map α : T → T ′ is monotone if for all
height values h ≥ 0 and for any two points x1, x2 ∈ f−1(h) it holds that x1 ≤h x2 implies
α(x1) ≤′

h+δ α(x2). A monotone δ-interleaving is a δ-interleaving (α, β) such that the maps α

and β are both monotone (see Figure 3). We define the monotone interleaving distance dMI as
the smallest δ for which there exists a monotone δ-interleaving. Similar to the regular setting,
we also study the two alternative definitions: the monotone δ-good interleaving distance dG

MI
and the monotone label interleaving distance dL

MI. Our main result is the following.

▶ Theorem 1. The distances dMI, dG
MI and dL

MI are equal.

Monotone leaf-label interleaving distance. If we restrict a label map to map only to the
leaves of T , we obtain a leaf-label map. A δ-leaf-labelling is a pair of leaf-label maps that is
also a δ-labelling. The leaf-label interleaving distance dLL

I , in turn, is defined as the smallest δ

for which there exists a δ-leaf labelling. We can show that this distance is an approximation
of the interleaving distance, in both the regular and monotone setting.

▶ Theorem 2. The (monotone) leaf-label interleaving distance between two (ordered) merge
trees T and T ′ is bounded by 2δ + G, where δ = dMI(T, T ′) and G is maximum height
difference of any pair of leaves in T and T ′.

3 Computation

For a monotone δ-leaf-labelling (π, π′), we can show that the value δ lies on the diagonal
or upper-diagonal of the matrix M = |M(T, f, π) − M(T ′, f ′, π′)|. Exploiting this property,
we can use a dynamic program to compute the monotone leaf-labelled interleaving distance
between two ordered merge trees T and T ′. In particular, we maintain the monotone leaf-label
interleaving distance between the subtrees Ti and T ′

j , which are the subtrees of T and T ′

consisting of the first i and j leaves respectively. By the above property, in combination with
the imposed order on the trees, it suffices to consider only few options at each iteration of the
dynamic program. The dynamic program runs in O(n2), where n is the combined number of
leaves of both trees. From Theorem 2, it follows that the algorithm is a 2-approximation of
the monotone interleaving distance, with an additive term capturing the height difference
between any two leaves.
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4 An Interleaving Distance for Ordered Merge Trees
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Abstract
Mapper graphs preserve the connected components of the inverse image function f : X → R over any
given cover. Inspired by the interleaving distance for Reeb graphs, (Chambers et al. 2024) extends
this notion of distance to discretized mapper graphs. The distance is upper-bounded using a loss
function. Unlike the NP-hard interleaving distance computation for Reeb graphs, the algorithm of
the loss function has polynomial complexity. In this paper, we implement the categorical framework
of mapper graphs and compute the loss function to bound the interleaving distance.
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1 Introduction

Developing efficient and computable metrics to compare graphical representations of data is
crucial for data analysis. Computationally, topological descriptors of discretized underlying
space are essential, as such input data is common. Often, these datasets are equipped with
a function f : X → R. Here, we direct our attention to mapper graphs; see Fig. 1 for an
example. These graphical data structures keep track of the relationship between connected
components of the inverse image of elements of a particular choice of cover. Such mapper
graphs can be compared using a variant of the interleaving distance [2, 3, 7]. However, the
computation of the interleaving distance is NP-hard in general [1, 2]. Formally, we encode
our mapper inputs as functors (see e.g. [5, 6]) of the form F : Open(K) → Set for a space K
encoding the cover information. In [3], K is defined for a chosen δ > 0 as a cubical complex
over the bounding interval [−B,B] with diameter δ.

The result is that the open sets of K are intervals of the form (iδ, jδ) for i, j ∈ {−L, · · · , L}
where L · δ = B. In [3], a 1-thickening on these intervals is introduced, where the thickening
(iδ, jδ)n is the interval ((i− n)δ, (j + n)δ). This can be pre-composed with the functor F to
result in an n-thickened functor Fn : Open(K) → Set given by Fn(U) = F (Un). This in
turn defines an interleaving distance dI [4, 7] as follows. An interleaving is a pair of natural
transformations φ : F ⇒ Gn and ψ : G ⇒ Fn which must satisfy certain commutativity

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

9



2 Computing a Loss Function to Bound the Interleaving Distance for Mapper Graphs

F G

σj

σj+1

σj+2

σj+3

σj+4

σj−1

σj−2

σj−3

σj−4

τj

τj+1

τj−1

τj+2

τj+2

Figure 1 Two input mapper graphs F and G. Discretization on the left.

properties. We will denote the four diagrams required to commute by φ(U, V ), ψ(U, V ),
▽φ,ψ(U), and △φ,ψ(U); see [3] for details. Then the interleaving distance is the smallest n
for which such interleaving exists, otherwise the distance is set to infinity [3].

Chambers et al. [3] defined a loss function for structures that have the format of a natural
transformation without being provided the commutativity assumptions. They call a collection
of maps φU : F (U) → Gn(U) and ψU : G(U) → Fn(U) an n-assignment; noting that if φ
and ψ satisfy the commutativity properties it would constitute an interleaving. Then the
loss function LB(φ,ψ) is defined in a way that results in finding the minimum k such that φ
and ψ can be turned into an (n+ k)-interleaving. When storing the functor information in a
graph, the result is that one must check whether two representatives under a particular map
are in the same connected component of a slice of the graph; see Fig. 2 for these diagrams.

▶ Theorem 1 (Chambers et al. [3]). For an n-assignment, φ : F ⇒ Gn and ψ : G ⇒ Fn,

dI(F,G) ≤ n+ LB(φ,ψ).

In this work, we provide additional details of the algorithmic setup for computing this
loss function on graph representations of the functor data. See [3] for additional details.

2 Algorithm and Computation

We set up the mapper graph data structure first. Our input is a pair of functors F,G :
Open(K) → Set and an n-assignment φ,ψ. Here K (i.e., the discretization of [−Lδ, Lδ] ⊂ R)
consists of vertices σi = iδ for −L ≤ i ≤ L. Additionally, we have edges τj = (σj , σj+1) for
−L ≤ j < L. We write a basis for Open(K) by defining the collection of intervals Uσi

=
((i− 1)δ, (i+ 1)δ) and Uτi

= (iδ, (i+ 1)δ) for all i. The vertex set of the graph representation
of the functor is given by V =

∐
i F (Uσi

). The edge set is given by E =
∐
i F (Uτi

) and are
attached to the vertices using the functor. See Fig. 1 for an example and [3] for details.

We implement this structure in Python using the NetworkX package. We build a custom
MapperGraph class to encode the functors F and G which constructed as graphs (VF , EF )

10
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F (Uτi) F (Uσl)

G(Un
τi) G(Un

σl
) G(Un+k

σl
)

e v1

[e′] [w] [w]
[e′] [e′]

F [⊆]

G[⊆]

φUσi

ψUn
τi

e ≡ (v1, v2)

F (Uσi
) F (U2n

σi
)

G(Un
σi
)

F (U2(n+k)
σi

)

v [v]

w

[v]
[v′] [v′]

F [Uσi ⊆ U2n
σi

]

φUσi

ψUn
σi

Figure 2 Example diagrams that must be checked for commutativity to determine the loss
function. At right are the representatives from the data structures which must be checked for being
in the same connected component of the same slice of the representative graph. See [3] for details.

F G

σj

σj+1

σj−1

τj

τj−1

Figure 3 Map the vertices of F at height σj with n = 1. The G slice contains vertices with
heights σj−1, σj , σj+1. Vertices in same connected component in F end up in different components.

and (VG, EG). We also store the height information for each vertex as node attributes. The
MapperGraph class also contains some useful functions for visualization and retrieval of data.

The n-assignments φ,ψ are encoded as vertex and edge maps; see [3] for details. To
define φ (ψ is similar), for height i of each vertex (or height of lower vertex for an edge) in
F , we only look at the n-thickening of G at that height. In other words, we define a slice
of the functor which only includes the vertices and edges within height [i− n, i+ n]. Each
element in F gets randomly paired with an element in the corresponding slice of G. The
resulting map is stored as a dictionary, with (object, image) as key-value pairs. Figure 3 and
4 illustrate some examples.

Given two mapper graphs F,G, and assignments φ,ψ, we compute the loss separately
for LUτ ,Uσ (or, LUτ ,Uσ ) and LUσ

▽ (or, LUσ

△ ). Fix a k for each step with binary search on
[0, · · · , 2L], where [−L,L] is the bounding box of the functors. For each k, we verify if
LB(φ,ψ) ≤ k. We travel across the diagrams and note if the resulting edges or vertices are
in same connected component. We show an example of two types of diagrams in Fig. 2. Loss
is the smallest k for which all diagrams commute. If no such k exits, then the loss is deemed
infinite.

11



4 Computing a Loss Function to Bound the Interleaving Distance for Mapper Graphs

F G

σj

σj+1

σj+2

σj−1

τj

τj+1

τj−1

Figure 4 Map edges of F with lower vertex-height σj with n = 1. The G slice contains edges
with lower vertex-heights σj−1, σj , σj+1. Notice how slicing varies from vertex mapping.

3 Discussion

Now that we have set up the data structure to encode 1-dimensional mapper graphs, we
are focusing on optimizing the loss function. Given two mapper graph functors F,G and an
initial n-assignment φ,ψ, our goal is to perturb the assignments cleverly such that the loss
function is minimized. In future work, we will deploy the Metropolis–Hastings algorithm
over the space of n-assignments to optimize and improve the bound. Further, our goal is to
extend this implementation to higher dimensional mapper graphs; i.e. when the input data
is of the form f : X → Rd.
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Mapper graphs are a popular visualization tool in topological data analysis. We investigate the
following type of inverse problem in the context of Mapper graphs: Given a graph G and data X,
does there exist a set of Mapper parameters such that the Mapper graph of X is isomorphic to G? We
provide constructions showing that the answer to this question is yes under mild assumptions. This
work shows that one can engineer the input Mapper parameters to get a desired graph. Nevertheless,
the constructions we provide are contrived and answering the inverse problem using parameter
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1 Introduction

Topological data analysis (TDA) uses methods from topology to study the underlying
structure and “shape” of a dataset. We refer the reader to [3] for an overview of this area.

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 Corresponding author
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2 Any Graph is a Mapper Graph

This paper focuses on Mapper introduced in [11], a popular visualization tool in TDA that
constructs a network representation of a dataset. Mapper has been used in many applications
including analyzing breast cancer data [9] and identifying diabetes subgroups [7].

To apply the Mapper algorithm, the user needs to determine the following parameters:
choosing a lens (or filter) function f : X → Y from a high-dimensional point cloud X to
a lower-dimensional space Y , a cover of the target space Y , and a clustering algorithm for
cover elements. Mapper is known to be sensitive to its parameters, and many researchers
have studied how to optimize them [1, 4, 2, 13]. We illustrate Mapper’s large sensitivity to
its parameters by providing constructions that show for a given graph G and data X, there
exists a lens function f : X → Y , cover U of Y , and clustering algorithm whose Mapper
graph is isomorphic to G.

2 Background

We define the necessary terms related to Mapper graphs for the results of this work. We refer
the reader to [8, 5] for an overview of topology and computational topology respectively.

▶ Definition 1 (Mapper Graph). Let X and Y be sets, and let f : X → Y be a function. For
any cover U of Y , define the cover f∗(U) of X as the collection of all clustered components
of f−1(U) over all U ∈ U . We define the Mapper construction of f as the simplicial complex
M(U , f) := Nrv(f∗(U)) where Nrv(f∗(U)) is the nerve of f∗(U). The 1-skeleton of M(U , f),
denoted by M (1)(U , f) is called the Mapper graph of f .

In practice, whenever X is a finite point cloud, one obtains the “clustered components of
f−1(U)” by running a clustering algorithm on each f−1(U). See Figure 1 for an example
of a Mapper graph. One choice of a clustering algorithm is the trivial clustering algorithm,
which returns {A} for any given set A ⊆ X. Using the trivial clustering algorithm for the
Mapper construction amounts to using the cover f−1(U) := {f−1(U) : U ∈ U} of X. We
call the simplicial complex MT(U , f) := Nrv(f−1(U)) the Mapper construction with trivial
clustering. In the construction of MT(U , f), we are simply taking the nerve of all inverse
images of our cover U . In the construction of M(U , f), we are taking the nerve after we split
each inverse image into its clustered components.

3 Any graph is a Mapper graph when using trivial clustering

We show that any graph is a Mapper graph with trivial clustering using two constructions.

3.1 Using the star cover
In this construction, we use the graph G as the co-domain. Additionally, we use the star of
vertices in our graph to form the cover U , where the star of a vertex v denoted as st(v) in a
graph is the subgraph consisting of all edges of G that contain v.

The construction leading to Theorem 2 involves using the star of each vertex as a cover
element, and then mapping at least one element of X to each edge of G. See Figure 2 for an
example of how to construct the cover and function.

▶ Theorem 2. Let G be a graph with edge set E. If X is a finite set of points with cardinality
|X| ≥ |E|, then there exists a cover U of E, and a function f : X → E such that the Mapper
graph with trivial clustering MT(U , f) is isomorphic to G.
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point cloud data X

cover 
 𝒰

lens function 
f : X → ℝ

2. Compute  
for each 

f −1(Ui)
Ui ∈ 𝒰

3. Cluster points in 
  for each f −1(Ui) Ui ∈ 𝒰

1. Initialize 4. Construct  
Mapper Graph

clusters   
become vertices

{Vj}j

add an edge  
between   
if 

Vj, Vk
Vj ∩ Vk ≠ ∅

Figure 1 Mapper Graph Construction. An example of the four step procedure to construct a
Mapper graph, which is the 1-skeleton of the nerve of the clustered sets in step 3.

x1, x3,x6, x7
x1, x2,x6, x7

x2, x3,x4, x5

x4 x5

X = {x1, x2, …, x7}

f(x1)

f(x2)f(x3)

f(x4) f(x5)

f(x6)
f(x7)

f

Figure 2 Mapper Graph Reconstruction. Left. Each color represents the star of a vertex. The
set of all stars of vertices is the cover. The function f maps at least one element of X to each edge
in G. Right. The Mapper graph is constructed using the function f and star cover. We get five
vertices that are colored according to the their corresponding cover element. The elements of X

listed on each vertex are those mapped to that cover element. We verify that the Mapper graph is
isomorphic to the original graph.
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4 Any Graph is a Mapper Graph

3.2 Using convex subsets as the co-domain
In the setting of using convex subsets of R3 as the co-domain, we can use a result from
[14, 12, 10] that shows there exists a finite collection of convex subsets in R3 whose nerve is
isomorphic to a given graph. We can then apply this result to give us a cover. We can choose
our lens function so that f maps data points of X to the intersections between convex sets.
This gives us Theorem 3.

▶ Theorem 3. Let G be a graph with edge set E. If X is a finite set of points in Rd with
cardinality |X| ≥ |E|, then there exists a collection C of convex sets in R3 and a function
f : X → ⋃

C∈C C such that the Mapper graph with trivial clustering MT(C, f) is isomorphic
to G.

4 Discussion

Although we are able to choose Mapper parameters to construct any graphical structure under
mild assumptions, these parameters are contrived and often not what a data practitioner
would choose. Investigating the inverse problem using a non-trivial clustering algorithm
and standard software parameters is needed to understand if somebody could manipulate
Mapper parameters to get a desired graphical structure. A result from [6] states that in any
Euclidean space, there is a graph and a sufficiently large point cloud in general position that
cannot be partitioned into parts such that the nerve of the collection of convex hulls of each
part is isomorphic to the graph. This leads us to suspect that there exists a graph that is not
a Mapper graph when restricted to more standard software Mapper parameters like cubical
covers or partitional clustering algorithms.
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Abstract
Differentiating 1-parameter persistent homology vectorizations is well-known. We establish a
theoretical foundation of differentiating Generalized Rank Invariant Landscape (Gril), a vectorization
technique for 2-parameter persistence modules. Further, we show that this framework can be used
for bifiltration function learning in the context of machine learning.
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1 Introduction

Recently, the authors in [5] introduced Generalized Rank Invariant Landscape (Gril) as a
vectorization method for 2-parameter persistence modules. Gril is based on Generalized
Rank Invariant [3] and the authors in [1] gave an algorithm to compute it. We establish
the conditions under which Gril is differentiable and compute an explicit formula for its
differential. We perform experiments with various benchmark graph datasets and datasets
from the domain of bio-activity prediction. A full version of the paper with all these details
will be made public shortly.

1.1 GRIL as a piecewise affine map
▶ Definition 1 (discrete ℓ-worm, [5]). Let p

d
:= {w : ∥p − w∥∞ ≤ d} be the d-square

centered at p ∈ R2 with side 2d for a given d > 0. Given ℓ ≥ 1, the ℓ-worm, p ℓ

d
, is defined

as the union of all d-squares q
d

centered at some point q on the off-diagonal line segment
p ± α · (1, −1) with α = j · d where j ∈ {1, . . . , ℓ − 1}.

▶ Definition 2 (Gril, [5]). For a 2-parameter persistence module M , the Generalized Rank
Invariant Landscape (Gril) is a function λM : R2 × N+ × N+ → R defined as

λM (p, k, ℓ) := sup
{

d ≥ 0: rkM
(

p ℓ

d

)
≥ k

}
.

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Differential of Generalized Rank Invariant Landscape (D-GRIL)

where rkM (I) denotes the Generalized Rank [3] of M over the interval I.

Let K be a simplicial complex with n simplices, labelled σ1, σ2, . . . , σn. A bifiltration function
f : K → R2 can be viewed as a vector vf ∈ R2n where, for k = 1, . . . , n, vf [2k − 1] = fx(σk)
and vf [2k] = fy(σk). Here, fx(σ) and fy(σ) denote the x- and y-coordinates of the vector
f(σ) respectively. Notice that the vectors in R2n that correspond to a valid bifiltration
function form a convex cone. We work with this set of vectors in R2n. In this setting, the
authors in [5] show that Gril is Lipschitz continuous in the following sense.

▶ Proposition 3. Let X be a discrete space with |X| = n. For fixed k, ℓ, p, let Λp
k,ℓ : R2n → R

be the map vf 7→ λ
Mf

k,ℓ (p). Then, Λp
k,ℓ is Lipschitz continuous.

Let Gk,ℓ : R2n → Rs be the map defined as:

Gk,ℓ(vf ) =
[
Λp1

k,ℓ(vf ), Λp2
k,ℓ(vf ), . . . , Λps

k,ℓ(vf )
]T

(1)

where {pj}s
j=1 are the s sampled center points. We drop the k, ℓ and refer to Gk,ℓ as G

whenever k, ℓ are well understood. We show that G is piecewise affine.
For notational convenience, in what follows we denote fx(σ) as σx and fy(σ) as σy,

and we call them the simplex coordinates of σ. Similarly, we denote the x-coordinate and
y-coordinate of p as px and py respectively.

We observe that, if there are two simplices σi, σj such that for some ρ ∈ Z and 0 ≤ ρ ≤ ℓ

and a, b ∈ {x, y}, one has |σa
i − pa

t | = ρ · |σb
j − pb

t | then, say for a = x and b = y, the point
representing the vector vf lies on a hyperplane in R2n:

{
v ∈ R2n : |v[2i − 1] − px

t | = ρ · |v[2j] − py
t |

}
.

Corresponding to each such pair of simplex coordinates, we get one hyperplane. Combining all
these hyperplanes, we get an arrangement H of hyperplanes in R2n [2]. The arrangement H
partitions R2n into relatively open r-cells, r ∈ {0, . . . , 2n}. We observe that this arrangement
induces an affine stratification SH (refer [4] for a formal definition) of R2n where the r-
dimensional strata are precisely the r-cells.

▶ Proposition 4. The top-dimensional strata of SH consist precisely of those bifiltration
functions that have a unique constraining simplex coordinate for each ℓ-worm.

▶ Theorem 5. Let K be a simplicial complex with n simplices. Let k, ℓ ∈ N, and let {pj}s
j=1

be the s sampled center points for the ℓ-worms. Then, G, as defined in Eq.(1), is a piecewise
affine map relative to the arrangement H.

Overview of the proof: G depends affinely on the simplex coordinates in each top-
dimensional stratum, because there is a unique constraining simplex coordinate for each
ℓ-worm. By continuity of G (Proposition 3), the restriction of G to each (affine) lower
dimensional stratum is affine.

1.2 Differential of GRIL
▶ Definition 6 (Upper and lower boundary of ℓ-worm). Let an ℓ-worm centered at p with
width d, denoted as p ℓ

d
, be given. A point t is said to be on the upper boundary of the

worm if t̊(↑R2) ∩ p ℓ

d
= ∅ where t̊(↑R2) denotes the open upper-set of t in R2. The collection

of all such points constitutes the upper boundary of the worm. Similarly, a point t is on the
lower boundary if t̊(↓R2) ∩ p ℓ

d
= ∅ and the collection of all such points constitutes the lower

boundary of the worm.
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▶ Definition 7 (Constraining Simplex Coordinate). Given a bifiltration function f , k ∈ N,
ℓ ∈ N, p ∈ R2 let λMf (p, k, ℓ) = d. Let σ be a simplex with p ℓ

d
∩ f(σ)↑R2 ≠ ∅ such that one

of the following two conditions holds: (1) fx(σ) = px ± j · d or (2) fy(σ) = py ± j · d for
some j ∈ {1, . . . , ℓ − 1}. Then σ is called a constraining simplex for p ℓ

d
. Depending on if σ

satisfies (1) or (2), σ is called x-constraining or y-constraining respectively.

▶ Definition 8. Let f be a bifiltration function. Let σ be a constraining simplex for p ℓ

d
.

The simplex σ is said to be an upper constraining simplex if f(σ)↑R2 intersects only the
upper boundary of p ℓ

d
. The simplex σ is called a lower constraining simplex if f(σ)↑R2

intersects both lower and upper boundary of p ℓ

d
. σ is said to be lower x-constraining if σ

is lower constraining and σx is the constraining simplex coordinate. The notions of upper
x-constraining, lower y-constraining and upper y-constraining are similarly defined.

▶ Theorem 9. Let K be a simplicial complex with n simplices. Let k, ℓ ∈ N and {pj}s
j=1

be the s sampled center points for the ℓ-worms. Then, the differential of G at any vf in a
top-dimensional stratum is given by:




∂Λp1
k,ℓ

(vf )
∂σx

1

∂Λp1
k,ℓ

(vf )
∂σy

1

∂Λp1
k,ℓ

(vf )
∂σx

2
. . .

∂Λp1
k,ℓ

(vf )
∂σy

n

...
...

∂Λps
k,ℓ

(vf )
∂σx

1
. . . . . .

∂Λps
k,ℓ

(vf )
∂σy

n




s×2n

where,

∂Λpj

k,ℓ(vf )
∂σx

i

=





−1, if σi is lower x-constraining for pj
ℓ

dj

+1, if σi is upper x-constraining for pj
ℓ

dj

0, otherwise

∂Λpj

k,ℓ(vf )
∂σy

i

=





−1, if σi is lower y-constraining for pj
ℓ

dj

+1, if σi is upper y-constraining for pj
ℓ

dj

0, otherwise

and dj is the Gril value at pj.
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Abstract
We propose an extended type of zigzag diagram to analyze time series via persistent homology. This
type fits neither in the framework of standard zigzag persistent homology nor in the framework
of multi-parameter persistent homology. We propose an algorithm to calculate spatiotemporal
persistence landscapes for this type of persistence modules. This yields a vector space valued
invariant that is amenable to statistics and can be used as an input for machine learning algorithms.
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1 Introduction

Persistent homology is one of the most frequently used methods in topological data analysis.
It can be used to extract structural information of sampled data on several spatial scales.
The object containing this information is called a persistence module. Mathematically, it is
described as a functor from an indexing poset S = {α1 ≤ α2 ≤ . . . ≤ αm} to the category of
finite dimensional vector spaces vec. The structure theorem [8] states that any persistence
module of this kind can be uniquely decomposed into a direct sum of interval modules,
yielding a complete invariant, the barcode. The same holds for zigzag modules, that are
functors where the poset S has the shape S = {α1 ≤ α2 ≥ α3 ≤ . . . ≥ αn}.
In case of multiple filtration values, persistence modules can be defined as functors from
some poset S ⊂ Rn to vec. This setting is called multi-parameter persistent homology.
In this case no complete invariant exists and plenty of research has been done to find
visualization methods or other useful, but incomplete, invariants. One of these invariants
are persistence landscapes, invariants that have been initially proposed for one-parameter
persistence modules [1] and afterwards extended to multi-parameter persistence modules [7].
Being valued in a Banach space, this invariant can be used for statistics as well as input for
machine learning algorithms.

Time series analysis

In one-parameter persistent homology, one frequently considers how the homology changes
when a filtration parameter of the Vietoris-Rips complex rises. However, when considering a
windowed time series one would like to track the changes of the homology as the point cloud
changes. A possibility to track the persistence of homological features throughout the time
is zigzag persistence [2, 6, 3]. Since the simplicial complexes defined for each window are

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Spatiotemporal Persistence Landscapes

neither subcomplexes nor supercomplexes of each other, two neighboring complexes Xi and
Xi+1 are included into the bigger complex Xi ∪ Xi+1, yielding the zigzag sequence

However, the filtration parameter ϵ for each complex has to be fixed. To account for
several filtration parameters, we propose a filtered zigzag sequence and hence, a diagram as
shown in Figure 1.

Since this diagram is not even a multi-parameter persistence module, no visualization
method is known. In our work, we adapt the framework of persistence landscapes to our
setting by using a generalization of the rank invariant [5].

2 Spatiotemporal Persistence Landscapes

In this section we define spatiotemporal persistence landscapes, an invariant and visualization
method for modules that have a shape as in Figure 1.

2.1 Definition
We define (ZZ, ≪), the underlying poset for the persistence modules that we regard, as
follows: ZZ = Z2 and

(a, b) ≪ (a′, b′) ⇔ a ≤ a′ and b = b′ ± 1 if b = 2z + 1 for some z ∈ Z or b = b′.

As in the case of multi-parameter persistence landscapes, we are interested in the rank over
regions Rδ

x in the parameter space that we define as

Rδ
x = {y ∈ ZZ : y = x + h with h ∈ ZZ, d(h, 0) ≤ δ},

where d is the maximum norm in Z2. To calculate the rank over regions we use the generalized
rank invariant [5].

▶ Definition 1. The k-th persistence landscape λk of a persistence module M : ZZ → vec
considers the maximal radius over which k features persist in every (positive) direction through
x in the parameter space

λk(x) := max{δ ≥ 0 : rank(M |Rδ
x
) ≥ k}.

The persistence landscape λ of M is the map λ : N × ZZ → R, (k, x) 7→ λk(x).

Analogously to one- and multi-parameter persistence landscapes, we obtain the following
lemma.

▶ Lemma 2. The persistence landscapes have the properties:
(i) λk(x) ≥ 0
(ii) λk(x) ≥ λk+1(x)
(iii) λk is 1-Lipschitz.
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Figure 1 Extended zigzag diagram.

2.2 Algorithm
To compute the spatiotemporal persistence landscapes, we use a result by Dey et al. [4]
that states that the generalized rank over a region can be computed as the rank of a certain
zigzag sequence along the boundary of that region. Hence, only the barcodes of certain
zigzag sequences have to be determined. Due to space limitations, we omit the detailed
description of the choice of the zigzag paths at this point and show only an example for the
point x = (4, 4) in Figure 2.

Figure 2 Red: Zigzag path in the parameter space to compute the landscapes at point (4, 4).

3 Application

We apply our algorithm to the time series shown on the left hand side of Figure 3. We
partition the time series into 16 windows of approximately 31 seconds length and use time
delay embedding for every window with embedding dimension 2. The resulting sequence of
point clouds can be seen in Figure 4. On the right hand side of Figure 3, the resulting first
landscape in homological dimension one is shown. As expected, for a smaller parameter ϵ of
the Vietoris-Rips complex one can see that also the small holes in the beginning and end
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4 Spatiotemporal Persistence Landscapes

-300 -200 -100 0 100 200 300

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 3 Initial time series (left) and resulting 1st landscape in dimension one (right).

of the time series are detected, but as ϵ grows they vanish and only the bigger hole in the
central part of the time series remains.
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Figure 4 Time delay embedding of the windowed time series.
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Abstract
We present a pipeline that takes as an input a weighted based chain complex, produces a tame
epimorphic parametrized chain complex, and encodes it as a tagged barcode. We show how to apply
this pipeline to the weighted based chain complex of a gradient-like Morse-Smale vector field on a
compact Riemannian manifold in both the smooth and discrete settings.
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1 Introduction

In topological data analysis (TDA), persistent homology studies a continuous function
f : M → R by filtering M by the sublevel sets of f and then applying homology in order to
obtain a persistence barcode [12]. Our goal is to develop a persistence theory for gradient-like
vector fields on Riemannian manifolds. Such a vector field may not be the gradient of any
function, so a difficulty is that there is no canonical filtration of M . Inspired by some recent
papers, see e.g. [13, 5, 4, 11], we are decomposing parametrized chain complexes, but with
epimorphic rather than the usual monomorphic internal maps that come from filtrations.

2 Tame epimorphic parametrized chain complexes

A parametrized chain complex is a functor X : [0, ∞) → Ch, where [0, ∞) denotes the
poset category of the totally ordered set of non-negative real numbers and Ch is the category
of non-negative chain complexes [14] of finite total dimension with coefficients in a fixed field
F. We call X epimorphic if all the appearing internal chain maps are degreewise surjective
and tame if there exist 0 = t0 < t1 < · · · < tr < tr+1 = ∞ such that, for any i = 0, . . . , r

and ti ≤ s ≤ t < ti+1, the internal chain map Xs≤t : Xs → Xt is an isomorphism. We
write TEPCh for the category of tame epimorphic parametrized chain complexes, where
morphisms are given by natural transformations.

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Tagged barcodes for the topological analysis of gradient-like vector fields

Following [6], given n ≥ 1, the n-disk of Ch is the chain complex Dn = (Dn
• , ∂•) with

Dn
k =

{
F, if k = n, n − 1,

0, otherwise,
and ∂k =

{
IdF, if k = n,

0, otherwise,
for all k ∈ Z.

Given n ≥ 0, the n-sphere of Ch is the chain complex Sn = (Sn
• , ∂•) with

Sn
k =

{
F, if k = n,

0, otherwise,
and ∂k = 0, for all k ∈ Z.

These chain complexes are indecomposable and every X ∈ Ch can be written as a finite
direct sum of disks and spheres in a unique way (only true with field coefficients, see e.g.
[14]). The only epimorphic chain maps between the disks and spheres of Ch are the identities
and Ψn : Dn → Sn, which is the identity in degree n and zero in all other degrees. It follows
that the indecomposable objects of TEPCh are of the following form.

▶ Definition 1. Let n ∈ N and 0 ≤ s ≤ t ≤ ∞. In the case n = 0 we additionally demand
that s = 0. Then we define the interval complex In[0, s, t) in TEPCh by

(In[0, s, t))r =





Dn, if 0 ≤ r < s,

Sn, if s ≤ r < t,

0, otherwise,

and (In[u, s, t))q≤r =





IdDn , if 0 ≤ q ≤ r < s,

Ψn, if 0 ≤ q < s ≤ r < t,

IdSn , if s ≤ q ≤ r < t,

0, otherwise.

Our first main result resembles the classical result for parametrized vector spaces, as used
in persistent homology [3], however for epimorphic parametrized chain complexes instead.
General parametrized chain complexes are of wild representation type (see e.g. [7]), whereas
for the monomorphic case see e.g. [5]. The epimorphic case is a contribution of this paper.

▶ Theorem 2 (Structure theorem). For every X ∈ TEPCh, there exists a unique multiset
tBar(X), called the tagged barcode of X, such that X ∼=

⊕

(n,s,t)∈tBar(X)

In[0, s, t).

Given X, Y ∈ TEPCh, we denote by dI(X, Y ) their generalized interleaving distance as
defined in [2]. By dB(X, Y ) we denote the generalized bottleneck distance as defined in [10].

▶ Theorem 3 (Isometry theorem). For every X, Y ∈ TEPCh, we have dI(X, Y ) = dB(X, Y ).

3 Parametrizing based chain complexes

We now describe a method that starts with a chain complex and repeatedly quotients out
disks, keeping track of how long they persist before getting simplified. Precisely, we assign
a tame epimorphic parametrized chain complex to a weighted based chain complex,
which is a chain complex C•, endowed with a basis Bk of Ck for each k and with weights
w(a, b) ∈ (0, ∞) for all a ∈ Bk and b ∈ Bk−1. A weighted based chain complex is called
generic if all the weights are pairwise different.

▶ Definition 4. For a generic weighted based chain complex C• = (C•, B•, w), we define the
parametrized chain complex Y = Y (C•) and the tagged barcode tBar = tBar(Y ) as follows.
(1) Initialize tBar := ∅.
(2) Find the pair (a, b) ∈ Bk × Bk−1, among all k, that has the smallest weight w(a, b) and

satisfies the condition: b ∈ ∂a. If there is no such pair, that is ∂• = 0, go to Step (5).
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Figure 1 Left: Vector field v on the 2-sphere with singular points p, q of index 2, s of index 1, and
x (represented by the whole boundary) of index 0. We have Y (MC•(v)) = I2[0, 1, 1) ⊕ I0[0, 0, ∞) ⊕
I2[0, 0, ∞), assuming p and s have distance 1. Right: Visualization of the tagged barcode of v.

(3) Update tBar by adding (n, t, t), where t = w(a, b) and n is such that (a, b) ∈ Bn × Bn−1.
(4) Update C• by quotienting it by the n-disk of Ch generated by a, i.e.

Cn ⇝ Cn/ Span(a), Cn−1 ⇝ Cn−1/ Span(∂a), Ck ⇝ Ck for k ̸= n, n − 1.

The differential on C• induces a differential on the quotient. Update Bn and Bn−1 by
deleting a and b, respectively. Repeat from Step (2).

(5) For each n ≥ 0, add as many copies of (n, 0, ∞) to tBar as the dimension of Cn.

(6) Set Y :=
⊕

(n,t,t)∈tBar

In[0, t, t) ⊕
⊕

(n,0,∞)∈tBar

In[0, 0, ∞) ∈ TEPCh.

4 Application to smooth and discrete vector fields

We study generic enough smooth vector fields (precisely, Morse-Smale with pairwise different
distances between singular points), without closed orbits (i.e. gradient-like). Given such v

on a Riemannian manifold M , let MC•(v) be its Morse complex [1], viewed as a weighted
based chain complex with bases and weights given by the singular points of v and distances
between them, respectively. Definition 4 then yields a tagged barcode for v (see Figure 1).

For computations, it is important to approximate smooth objects. By [9], there exists
a triangulation M of M and a discrete vector field V on M , such that MC•(v) ∼= MC•(V )
as based chain complexes, where MC•(V ) is the combinatorial Morse complex [8]. We
view MC•(V ) as a weighted based chain complex as well, using the distances between the
barycenters of the critical cells, thus Definition 4 applies. By [15], V induces a new discrete
vector field ∆(V ) on the barycentric subdivision ∆(M) of M , with MC•(V ) ∼= MC•(∆(V )).
By iterating this process, we can approximate Y (MC•(v)) arbitrarily well.

▶ Theorem 5. For every ε > 0 there exists N ∈ N such that for all n ≥ N

dI

(
Y (MC•(v)), Y (MC•(∆n(V )))

)
< ε.
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1 Introduction

Topological data analysis, and particularly persistent homology, has been used in many
applications where input data arises as graphs [1]. Recently, particularly with the rise
in neuroscience data [6], there is a push for more methods for measuring structure that
incorporates directionality [2, 3, 4, 5, 7].

We introduce a new method for analyzing directed graphs with persistent homology via a
simplicial filtration, called the walk-length filtration, that encodes information about when a
walk visits all vertices in a particular set to determine when a simplex should be included.
Note that if we asked for a path that visits every vertex just once, this would be equivalent
to finding Hamiltonian paths, which is an NP-complete problem, hence we focus on walks.
While this filtration is not stable under the network distance used in related work, we define
a modification that replaces the maximum with a summation for which stability can be
obtained. Finally, we show our results of applying walk-length persistence in cycle networks.

2 Definition

A weighted directed graph (digraph) is a triple D = (V,E,w), where V is a finite set of
vertices, E ⊆ V × V is a set of directed edges and there is a weight on the edges given
by w : E → R≥0. We assume that ω(v, v′) = 0 if and only if v = v′. A walk of length n in D
is any sequence of vertices γ = (v0, . . . , vn) where (vi, vi+1) ∈ E for 0 ≤ i ≤ n− 1. Here the
vertices can be repeated. The weight of a walk γ is given by w(γ) :=

∑n−1
i=0 w(vi, vi+1). The

collection of all complete weighted digraphs (V, V × V, ω) will be denoted by N .
Let D = (V,E,w) be a weighted digraph. For any subset of vertices σ ⊆ V , define

fD(σ) = inf{w(γ) : γ is a walk in D that contains all vertices in σ}.

If there is no such walk, we set f(σ) = ∞.
For δ ∈ R, we can define a simplicial complex Kδ = {σ ⊆ V : f(σ) ≤ δ}. Then, the

walk-length filtration is the parameterized collection of simplicial complexes {Kδ}δ∈R and
DgmWL

k (D) is defined as the k-dimensional walk-length persistence diagram associated to
the corresponding walk-length filtration {Kδ}δ∈R.

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1 A counterexample to stability under an ℓ∞-distance. The one-dimensional persistence
points are (1, 2) for D and (1 + ε, 2 + 2ε) for Dε.

Given a strongly connected weighted digraph D = (V,E,w), the shortest-distance func-
tion ωD : V × V → R is given by ωD(u, v) := min{w(γ) : γ is a walk in D from u to v}. The
complete weighted digraph (V, ωD) is called the shortest-distance digraph associated to D.

▶ Proposition 1. Let D = (V,E,w) be a strongly connected weighted digraph, and let
X = (V, ωD) be the shortest-distance digraph associated to D. Then, the walk-length filtrations
for D and X are the same.

3 Stability

One useful property is that of stability: if the input data is close in some metric, then the
resulting representation is closer in its own metric. For this purpose, we work with complete
weighted digraphs, where there is an edge for any two distinct vertices; these can also be
called networks. The standard in the persistence for digraphs literature is to use the network
distance dN [2, 3, 7]. We first point out that our filtration is not stable under this distance.
A counterexample is shown in Figure 1. In essence, the issue arises because our filtrating
function f is a sum in the walk length but the network distance dN is a maximum. For this
reason, we define a summation version of the network distance.

▶ Definition 2. Let X = (X,ωX) and Y = (Y, ωY ) be two networks. Define the ℓ1-distortion
of a correspondence R ⊂ X × Y as

dis1(R) :=
∑

(x,y),(x′,y′)∈R
|ωX(x, x′) − ωY (y, y′)|.

Then the network ℓ1-distance d1
N : N × N → R is defined as d1

N (X ,Y) := 1
2 min

R
dis1(R).

▶ Proposition 3. The network ℓ1-distance d1
N is a pseudometric.
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Figure 2 Networks X (left) and Y (right) showing the inequality of Proposition 5 can be strict.

As done in [2], the standard network distance dN can be reformulated using pairs of maps
between networks. Here we define the parallel version in our alternate formulation.

▶ Definition 4. For X ,Y ∈ N and any two maps φ : X → Y and ψ : Y :→ X on their sets
of vertices, the ℓ1-distortion and ℓ1-codistortion terms are defined respectively as

dis1(φ) :=
∑

x,x′∈X
|ωX(x, x′) − ωY (φ(x), φ(x′))|,

codis1(φ,ψ) :=
∑

(x,y)∈X×Y
|ωX(x, ψ(y)) − ωY (φ(x), y)|.

Then, define d1,map
N (X,Y ) := 1

2 minφ,ψ
{

max{dis1(φ),dis1(ψ), codis1(φ,ψ), codis1(ψ,φ)}
}
.

Unlike the ℓ∞ case, here we have d1,map
N ≠ d1

N . However, for the purpose of stability, it
suffices to use the inequality shown in Proposition 5 below.

▶ Proposition 5. Let X and Y be two networks. Then, d1,map
N (X ,Y) ≤ d1

N (X ,Y).

An example where the inequality in Proposition 5 is strict is shown in Figure 2. We now
want to obtain stability for the ℓ1-distance:

dB(DgmWL
k (X ),DgmWL

k (Y)) ≤ 2 d1,map
N (X ,Y) ≤ 2 d1

N (X ,Y).

A proof for this inequality will be included in the full version of the paper.

4 Cycle Networks

Lastly, we turn our attention to a specific type of directed graph: cycle networks. For n ≥ 3,
let Dn be the cycle graph given by a full directed cycle with n vertices where all edges
have weight 1. Next, we define D̃n as a modification: Swap one of the edges, say (x1, x2),
to (x2, x1), keeping its weight 1; to maintain strong connectivity, also add the original
edge (x1, x2) with weight n. We define the cycle network (Gn, ωGn

) and semicycle network
(G̃n, ωG̃n

) as the respective associated shortest-distance digraphs. We now compare results
with Dowker persistence [2]. See Figure 3 for an example with 6 vertices.

For cycle networks, we have DgmWL
1 (Gn) = DgmD

1 (Gn) =
{

(1, ⌈n/2⌉) ∈ R2}
. For

semicycle networks, we conjecture that

DgmD
1 (G̃n) =

{
(1, ⌈(n− 1)/2⌉) ∈ R2}

and DgmWL
1 (G̃n) =

{
(1, n− 1) ∈ R2}

.
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4 The Walk-Length Filtration for Persistent Homology on Weighted Directed Graphs

Figure 3 Comparison between Dowker and walk-length filtrations. On the top, a cycle with all
weights equal to 1. Then, add a vertex (1, 6) with weight 1 and change weight of (6, 1) to 6.

The relevance of these semicycle networks G̃n lies in that they hint at an interesting
property of the walk-length filtration: a higher sensitivity to directionality in cycles, resulting
in non-directed cycles dying later than complete directed cycles.
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Abstract
The typical topological data analysis pipeline starts with constructing a filtered complex – most
often a Vietoris-Rips complex – from a given point cloud. The conventional algorithms tend not to
assume any additional structure in the point cloud. We study whether a high degree of symmetry
with a known symmetry group could bring improvements to the complex construction algorithms.
By finding productive triage within a presentation of the symmetry group, preliminary results show
we speed up the complex construction process.
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1 Introduction

We introduce a novel algorithm for faster Vietoris-Rips complex construction. Our algorithm
leverages the orbit of points under the group action described by its corresponding symmetry
group. These orbits frequently allow us to bypass redundant construction of complexes when
creating a VR-complex, resulting in faster runtimes and requiring less memory.

2 Background

Our symmetric developments were made with a focus on point cloud persistent homology
with a distance-based filtration. As such, the background provided below reflects this scope.

2.1 Topological Background

We recall that given a set V of vertices, an (abstract) simplex is a subset σ ⊂ V . A simplicial
complex is an order ideal of the powerset of the vertices ordered by inclusion – in other words,
a simplicial complex is a set of subsets of V such that if τ ⊂ σ and σ ∈ Σ for a simplicial
complex Σ, then τ ∈ Σ. Finally, we recall the definition of a Vietoris-Rips complex at scale
t ∈ R of a finite metricspace (V, d) as V Rt(V ) = {σ ∈ 2V | diam σ ≤ t}, where the diameter
diam S is the largest distance between points in S.

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 A Symmetry-Aware Vietoris-Rips Algorithm

2.2 Symmetry Tools

The symmetry group G of a geometric object is the group of all transformations under which
the object is invariant, endowed with the group operation of composition. Symmetries of
geometric objects are often modeled by group actions.

▶ Definition 1. A group action by a group G on a set S is a group homomorphism from G

into the group of automorphisms of S, or equivalently a map G × S → S. We often write the
action of a group element g on a set element s as g(s).

▶ Definition 2. The orbit of an element under a group action is the set of all possible images
of s under the group action orbitG(s) = G(s) = {g(s)|g ∈ G}.

The set of all orbits partitions the set S, and two elements of the same orbit can be
considered equivalent under the equivalence relation s ∼G t if t = g(s) for some g ∈ G.

If a group acts on a set S, then that group action induces a group action on the power
set 2S by defining g({s1, . . . , sn}) = {g(s1), . . . , g(sn)}. Note that this construction induces
a group action on simplexes from a group action on their vertices.

3 Computation

Afra Zomorodian’s incremental algorithm is a common choice for fast Vietoris-Rips complex
construction [3]. We’ve adapted Zomorodian’s algorithm to leverage the full description of
a group action encoding symmetries of a point cloud input. The key recognition for our
improvements is that if a group G acts on point cloud X by isometries, when a simplex
enters the VR complex at parameter value r, all simplexes in its orbit enter the complex at r.

By imposing a total order on simplexes (per Bauer and Zomorodian [2, 3]), we can describe
a smallest element in an orbit. Speed-ups in generating and traversing VR complexes come
primarily from building the capacity to recognize when a proposed next element of the complex
is the smallest element in its orbit. With this discernment, we only process smallest-in-orbit
elements.

A naive approach to identifying these smallest elements is generating the entire orbit
of every element inspected and checking whether it is smallest in its orbit. This approach
requires a lot of memory and time. If we instead assume that the group is described by a
finite presentation G = ⟨g1, . . . , gn|r1, . . . , rm⟩, we may define a notion of pseudo-minimality.

▶ Definition 3. An element s of a totally ordered set S with an action of the group G =
⟨g1, . . . , gn|r1, . . . , rm⟩ is pseudo-minimal if s ≤ gi(s) and s ≤ g−1

i (s) for all generators gi.

It would be ideal for pseudo-minimality to imply minimality in an orbit. However, our
experiments imply that this may not be the case. Even so, this approach reduces the number
of elements that require the inspection of an entire orbit dramatically.

For an example of pseudo-minimality, consider the 4-bit hypercube. There is a group
action by the symmetric group S4, acting by permuting the bits addressing each vertex.
The symmetric group has one presentation in which the generators are all the adjacent
transpositions: (12), (23), (34). Each of these is its own inverse.

Now, consider the simplex (3, 12, 13) – written as bit-strings this is the simplex (0011, 1100, 1101).
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Figure 1 Timings for creating, traversing and jumping to every 100th element of the Vietoris-Rips
complexes with maximum filtration value in range [2,20] and maximum dimension in range [5, 20].

It maps under the generators of S4:

(0011, 1100, 1101) (12)−−→ (0011, 1100, 1110) (3, 12, 13) (12)−−→ (3, 12, 14)

(0011, 1100, 1101) (23)−−→ (0101, 1010, 1110) (3, 12, 13) (23)−−→ (5, 10, 14)

(0011, 1100, 1101) (34)−−→ (0011, 1100, 1110) (3, 12, 13) (34)−−→ (3, 12, 14)

It is clear by inspection that lexicographically the images are all larger or equal. However,
(3, 12, 13) (14)(23)−−−−−→ (3, 7, 12) – in binary (0011, 1100, 1101) (14)(23)−−−−−→ (0011, 0111, 1100) is the
actual orbit-minimal representative.

3.1 Results
We can imagine a few interesting point clouds our symmetry-aware VR algorithm applies to
(namely symmetric representations of sporadic groups). For now, we run timing experiments
using the 4-bit and 5-bit hypercubes Q4, Q5 as input, since its difficult-to-compute connectivity
sparked the development of our algorithm [1]. We compare the Zomorodian Incremental
(ZI) algorithm with one that saves only orbit-minimal elements (SZI) and one that also
uses pseudo-minimality to reject candidates for orbit-minimality (SZIG) – see Figure 1.
Preliminary data suggests our symmetry-aware approach speeds up traversals and jumps
between simplexes within a Vietoris-Rips complex. We are currently performing analyses to
determine the asymptotic behavior of our SZI and SZIG algorithms.

References
1 Henry Adams and Žiga Virk. Lower Bounds on the Homology of Vietoris-Rips Complexes of

Hypercube Graphs, 2023. arXiv:2309.06222.
2 Ulrich Bauer. Ripser: Efficient Computation of Vietoris-Rips Persistence Barcodes. Journal

of Applied and Computational Topology, 5(3):391–423, 2021.
3 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. In Proceedings of

the Twentieth Annual Symposium on Computational Geometry, pages 347–356, 2004.

39





On Totally-Concave Polyominoes
Gill Barequet1 #

Dept. of Computer Science, Techion—Israel Inst. of Technology, Haifa, Israel

Noga Keren #

Dept. of Computer Science, Techion—Israel Inst. of Technology, Haifa, Israel

Johann Peters #

Dept. of Mathematics, Univ. of Waterloo, ON, Canada

Adi Rivkin #

Dept. of Computer Science, Techion—Israel Inst. of Technology, Haifa, Israel

Abstract
A polyomino is a connected set of cells on Z2. Every row or column of a totally-concave (TC)
polyomino consists of more than one sequence of cells. We show that the minimum area of a TC
polyomino is 21. We implement and run an algorithm for counting TC polyominoes. Finally, we prove
that the associated sequence (κ(n)) has a finite growth constant λκ, and prove that λκ > 2.4474.
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1 Introduction

A polyomino of area n is an edge-connected set of n cells on Z2. Polyominoes are equivalent up
to translation. Counting polyominoes is a long-standing problem [8, 9]. The sequence A(n),
counting polyominoes, is now known up to n = 70 [1]. The growth constant of polyominoes
has attracted much attention. Klarner [12] showed that λ := lim

n→∞
n
√

A(n) exists and is finite.
Madras [13] proved that lim

n→∞
A(n+1)/A(n) = λ. It is known [4, 5] that 4.0025 ≤ λ ≤ 4.5252.

In a totally-concave polyomino (TCP), each row/column consists of at least two sequences
of cells (Fig. 1). It is hinted [7, Prob. 14.5.4] that the minimum TCP has area 21. An
algorithm for computing κ(n), the number of n-cell TCPs, is also sought [ibid., Prob. 14.5.5].

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 Corresonding author.

(a) Area 21 (b) Area 24 (i = 26, o = 24, h = 46)

Figure 1 TCPs of various areas and flavors.
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2 On Totally-Concave Polyominoes

Figure 2 The 19 TCPs of area 21, up to rotation and mirroring.

2 Minimum Area

▶ Theorem 1. The minimum area of a TCP is 21.

Proof. Denote by n the area of a TCP having an m × ℓ bounding box. A lower bound on n

is achieved by classifying the edges as hidden, outside, and inside (Fig. 1(b)). The top (resp.,
right/bottom/left) edge of a cell c is hidden if there is an occupied cell immediately above
(resp., right/below/left) c. An edge is outside if it is not facing any other edge. An inside
edge is facing another edge with a gap of at least one cell. Denote by h, o, i the number of
hidden, outside, and inside edges, resp. By duplicity of inside and outside edges, we have
o = 2m + 2ℓ and i ≥ 2m + 2ℓ. We also have h ≥ 2n − 2 since the TCP is connected. Since
h + o + i = 4n, we have n ≥ 2m + 2ℓ − 1. For an upper bound on n, assume wlog. that m ≤ ℓ.
The TCP is missing at least one cell from each of the ℓ columns, none of which in the top or
bottom row, and at least two further cells, one in the top and one in the bottom row. Hence,
n ≤ mℓ − ℓ − 2. Altogether, we have 2m + 2ℓ − 1 ≤ n ≤ mℓ − ℓ − 2, with m ≤ ℓ. A case
analysis shows that the smallest n satisfying these constraints is 21, with m = 5 and ℓ = 6.
Hence, n ≥ 21. On the other hand, Fig. 1(a) shows TCPs of size 21. The claim follows. ◀

This result was verified by our counting programs (Section 3). See also Figure 2.

3 An Efficient Counting Algorithm

We improved Jensen’s algorithm [10, 11] which operates on strips of height h (1 ≤ h ≤ n
2 ),

considering column by column (left to right), and cell by cell (top to bottom) within a
column. Each cell is considered as either occupied or empty. Instead of all polyominoes,
the algorithm keeps in memory all possible right boundaries, maintaining a database whose
keys are signatures, where a signature consists of a boundary plus all possible connections
between boundary cells via cells on the left. Each entry contains statistics of partially-built
polyominoes. The counts of polyominoes are updated when the next cell is chosen as occupied.
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Figure 3 Number of signatures (while counting TCPs), all poyominoes, and TCPs.

Table 1 Counts of TCPs (values of κ(n) for n ≤ 32 appear in the full version of the paper).

n κ(n) n κ(n) n κ(n)
33 435,921,253,072 34 2,113,011,155,472 35 10,065,872,407,536

For TCPs, we ensure that columns and rows consist of more than one sequence of cells.
This is easy for columns: At the end of processing a column, we discard all entries of columns
that contain one or no sequence of cells. For rows, we split each signature into at most 4h

subsignatures by keeping either 0: First sequence of cells has not been met yet; 1: Inside the
first sequence; 2: Between the first and second sequences; or 3: Already entered the second
sequence. Then, we count only polyominoes with signatures whose line indicators are all 3.

The running time of the modified algorithm is Õ(3.464n), which is still asymptotically
much less than the total number of polyominoes. Figure 3 demonstrates this phenomenon.

We implemented the modified algorithm in C++ and ran it on a 12th gen. Intel(R)
i9-12900KF with 128GiB of RAM. Table 1 lists the counts obtained after 41 CPU hours.

4 Growth Constant

4.1 Existence
▶ Definition 2. (lexicographic order) For cells c1, c2, we say that c1 ≺ c2 if c1 lies in a
column which is to the left of the column of c2, or if c1 lies below c2 in the same column.

▶ Definition 3. (concatenation) Let P1, P2 be two polyominoes, and let c1 (resp., c2) be
the largest (resp., smallest) cell of P1 (resp., P2). The concatenation of P1 and P2 is the
placement of P2 relative to P1, such that c2 is found immediately on top of c1.

▶ Theorem 4. The limit λκ := lim
n→∞

n
√

κ(n) exists and is finite.

Proof. (Following [12].) First, the sequence κ(n) is supermultiplicative, i.e., κ(n)κ(m) ≤
κ(n + m) for all m, n ∈ N. Indeed, all n-cell TCPs can be concatenated with all m-cell TCPs
(see Figure 4), yielding distinct (n + m)-cell TCPs. Second, there exists a constant µ > 0 s.t.
κ(n) ≤ µn for all n ∈ N (e.g., µ = λ). By a lemma of Fekete (cf. [14]), the claim follows. ◀

Fig. 5 shows plots of the known values of (4κ(n))1/n (see Section 4.2) and κ(n)/κ(n − 1).
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Figure 4 The concatenation of two TCPs is always a TCP.
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Figure 5 Plots of known values of (4κ(n))1/n and κ(n)/κ(n−1).

4.2 A Lower Bound on λκ

Figure 6 A few compositions of a sample pair of polyominoes.

▶ Definition 5. (composition) A composition of two polyominoes is a placement of the two
polyominoes, s.t. they touch, possibly in multiple places, but do not overlap. (See Figure 6.)

▶ Theorem 6. λκ > 2.4474.

Proof. Since the rightmost and leftmost columns of any TCP have at least two cells, there
are at least four lexicographic compositions of any pair of TCPs P, Q that yield TCPs (Fig. 7).
Hence, we have that 4(κ(n))2 ≤ κ(2n). Then, Thm. 1(a) in Ref. [2] implies that any term of
the form (4κ(n))1/n is a lower bound on λκ. In particular, λκ ≥ (4κ(35))1/35 > 2.4474. ◀
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Figure 7 The at least four order-preserving compositions of a pair of TCPs.
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Abstract
We introduce a new variant of the art gallery problem, namely, the Gate-Cover Problem in Thin
Polyominoes. We show that the VC-dimension of the problem is 3, describe an efficient greedy
algorithm and present selected experimental results. We also discuss some of the open questions
that we are considering in this ongoing research project.
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1 Introduction

The Art Gallery Problem (AGP) is a classic problem in computational geometry [4, 5, 6].
In this problem, a polygon P is given, and the goal is to find the smallest set of points to
guard P , where a point p ∈ P is guarded by a point g ∈ P if and only if the line segment gp

is contained in P . The motivation for AGP, as implied by its name, is placing a small set of
cameras that allow detecting an intruder in an art gallery. However, sometimes guarding the
entire gallery is unnecessary, and it is enough to guard a certain set of “gates” in P , so that
one can output an approximate location of an intruder, by following it from the moment it
enters the gallery. For example, suppose we have a city where a thief roams the streets,
and we would like to delimit his location to a certain street, even without knowing his exact
location. To represent the city, we use a thin polyomino P . A polyomino P is a polygon
formed by joining together |P | = n unit squares on the square lattice, and a polyomino is
thin if it does not contain a 2 × 2 block of unit squares. In this analogy, a street would be
a sequence of unit squares in P , such that every pair of consecutive unit squares share an
edge. Thus, to be able to tell in which street the thief is located at every moment in time,
we simply need to guard all the “junctions” of P , i.e., edges of squares that separates two
streets, and “entrances” to the city, which are edges on the boundary of P . We therefore
introduce a new variant of AGP in thin polyominoes, which we call The Gate-Cover Problem
in Thin Polyominoes, and where the goal is to guard a set of gates in a thin polyomino P .
We assume that cameras are placed on the center points of unit squares, and that a camera

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 The Gate-Cover Problem in Thin Polyominoes

c sees a gate g if and only if g belongs to a unit square visible to c in the same row/column
as c. The range of the camera can be unbounded or within some hop-distance.

▶ Problem 1 (The Gate-Cover Problem in Thin Polyominoes). Given a thin polyomino P and
a set G of gates, find the minimum set of cameras that cover all gates.

Figure 1 Right: Center camera in each square. Left: Greedy solution with infinite camera.

2 VC-dimension

We show that the VC-dimension of the gate cover problem in thin polyominoes is 3. Let P

be a polyomino and G a set of gates. For a camera (unit square) c ∈ P , denote by G(c) the
set of gates that c covers. Consider the set system (G, R) where R = {G(c) | c ∈ P}. The set
G is shattered by R if for every subset of G, there exists a camera c that covers exactly this
subset. We show that there exists a set of three gates that can be shattered (Figure 2), and
that no set of four gates can be shattered. Therefore the VC-dimension is 3, which implies a
O(log OPT)-approximation algorithm in near linear time by Brönnimann-Goodrich [1].

c1

c2

c3

c4

c5c6

g1

g2

g3

c7

c8

Figure 2 A polymonio with 3 gates that can be shattered.

3 Exact algorithms

To obtain an exact algorithm, we use orthogonal line separators. Recently, separators have
been used to obtain exponential time exact algorithms for various problems (see, e.g., [3]).
Carmi et al. [2] show that there exists either a horizontal or vertical line on the grid that
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intersect O(
√

n) unit squares of P , and such that on each side of it there are at most 4/5n

unit squares of P . Given a vertical line separator ℓ, we can divide the problem into 3
√

n

subproblems of size at most 4/5n, as follows. For each unit square edge that lies on the
separator, we have three options: (1) there is a camera above it (in the same column), (2)
there is a camera below it, and (3) there is no guarantee that a camera is placed in this
column. For the third type of subproblems, we do not have to update the polyomino. For the
first (resp. second) type of subproblems, we add a single unit square with an entrance gate
below (rep. above) the line, and remove all the gates in the column below it (resp. above it).

Note that for simply connected thin polyominoes (without holes), this approach gives a
polynomial time algorithm, because the dual graph of the polyomino in this case is a tree,
and thus there is a single vertex that separates the polyomino.

4 A greedy approximation algorithm

Let P be a thin polyomino with n unit squares, and G a set of gates. Consider the following
greedy algorithm: Initialize an empty set S. While G is not empty, find a camera c that
maximizes |G(c)| (If there is more than one such camera, choose one arbitrarily). Add c to
the set S, and remove G(c) from G. The algorithm stops when all gates are covered, and
thus S is a gate cover for G.

Running time. To bound the running time, we first observe that not all centers of
unit squares have to be considered for placing cameras. More precisely, we can consider
only “dominating” cameras (a camera c is dominating if there is no camera c′ for which
G(c) ⊆ G(c′)). Dominating cameras are those placed in the unit squares that contain gates,
or in “corner” unit squares that cover at least two gates (see Figure 1). Thus there are O(|G|)
such cameras. The running time of the algorithm is therefore O(n + |G| log |G|).

Approximation factor. In Figure 3 we show a polyomino in which the above algorithm
output a set of 3 cameras, while the optimal solution has 2 cameras. In an ongoing work
we formalized several claims that we hope would lead to an upper bound of 3/2 on the
approximation factor. Next, we present experimental results that support this direction.

Figure 3 Right: Greedy results. Left: Brute force result - OP T solution.
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4 The Gate-Cover Problem in Thin Polyominoes

5 Experimental results

We have constructed random “cities” with increasing size and used the following algorithms
to solve the gate cover problem: (i) The greedy algorithm described above, (ii) A brute force
algorithm (up to a reasonable size for running), and (iii) 0-1 Integer-Linear-Programming.

The results for unbounded-range cameras and 5-hop distance cameras are presented in
the full version of this paper.Note that comparing to brute force (in small cities) and the
0 − 1ILP algorithm (in larger cities), the greedy algorithm achieves close to optimal results,
and always within a 3/2-factor from the optimum. In our ongoing work, we are trying to
prove that 0 − 1ILP is optimal by computing the dual problem.
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There is a long history of counting the maximum number of crossing-free subdrawings in straight-line
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1 Introduction

In a simple drawing of a graph vertices are represented by distinct points in the plane and
edges by Jordan arcs that connect the two respective end-vertices. In addition, two edges
meet in at most one point, which is a crossing or a common vertex. Ajtai, Chvátal, Newborn,
and Szemerédi [2] showed in 1982 that a simple drawing of an arbitrary graph on n vertices
has at most 1013n different crossing-free subdrawings.

Subsequently, a lot of research has been done on straight-line drawings, where edges are
the line segments between their end-vertices. For example, Sharir and Welzl [7] showed that
such drawings contain O(10.05n) different crossing-free perfect matchings and Sharir, Sheffer,
and Welzl [6] proved an upper bound of O(54.55n) for the number of different crossing-free
Hamiltonian cycles. In the other direction, García, Noy, and Tejel [4] introduced double
chain drawings (see Figure 1(a) for an example) and proved that they contain Ω(4.64n)
crossing-free Hamiltonian cycles. Asinowski and Rote [3] analyzed generalizations of these
drawings and showed that they contain Ω(3.09n) different crossing-free perfect matchings.

Recently, Rutschmann and Wettstein [5] observed in their paper on triangulations that
most straight-line drawings known to contain many crossing-free subdrawings follow a specific
pattern, which they describe in their definition of a chain. Ultimately a chain induces a
Hamiltonian cycle of completely uncrossed edges. This leads us to 2-page-book drawings.
They are simple drawings where the vertices lie on a horizontal line, which defines the two
pages, and each edge lies either above or below this line; see Figure 1(b) for an example.
Equivalently, a simple drawing of the complete graph Kn is a 2-page-book drawing if and

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Counting Crossing-Free Structures in 2-Page-Book Drawings

only if it contains a Hamiltonian cycle of completely uncrossed edges. For such drawings we
can show upper bounds that lie significantly below the bounds for straight-line drawings.

▶ Theorem 1. Every 2-page-book drawing on n vertices contains O((2 +
√

3)n) different
crossing-free perfect matchings and O((4 +

√
17)n) different crossing-free Hamiltonian cycles.

(a) (b)

Figure 1 (a) A double chain drawing of K8. (b) A crossing minimal 2-page-book drawing of K8.
The Hamiltonian cycle of completely uncrossed edges is drawn orange in both examples.

2 Proof sketch of Theorem 1

Let D be a 2-page-book drawing on n vertices and let us first consider the case of a perfect
matching M in D. Every vertex v in D is incident to exactly one edge e = {v, w} in M and
w lies either to the left or to the right of v. Furthermore, every edge in D lies either on the
top or the bottom page. Therefore we get the following.

▶ Lemma 2. In a 2-page-book drawing D on n vertices every crossing-free perfect matching M
corresponds to a unique word of length n over the alphabet {1, 2, 3, 4}.

Proof. For each vertex in D we encode its incident edge in M going to the top-left by 1,
top-right by 2, bottom-left by 3, and bottom-right by 4; see Figure 2(a). Then M clearly gets
mapped to a word of length n over the alphabet {1, 2, 3, 4}.

Let W be a word of length n over the alphabet {1, 2, 3, 4}. We show that at most one
crossing-free perfect matching in D gets mapped to W. Reading W from left to right, every
2 or 4 starts an edge and every 1 or 3 ends an edge of a potential perfect matching. Since the
matching needs to be crossing-free, every time we encounter a 1 or 3, we must connect its
corresponding vertex w to the closest vertex v to its left that got assigned a 2 or 4, respectively,
and that we did not yet connect; see Figure 2(b). Otherwise we would leave some vertex
between v and w that later would have to cross {v, w}; see Figure 2(c). Consequently, the
crossing-free perfect matching corresponding to W, if it exists, is unique. ◀

1 2 3 4

(a)
2 2 1 1

(b)
2 2 1 1

(c)

Figure 2 (a) The 4 letters corresponding to a vertex in a perfect matching. (b) A 1 has to be
connected to the closest free 2 to its left so that (c) no later edge (dashed) will cause a crossing.
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At this point we would get an upper bound of 4n for the maximum number of crossing-free
perfect matchings in D. However, for edges between consecutive vertices, which are orange in
Figure 1(b), it does not matter whether they are drawn on the top or bottom page because
they are completely uncrossed anyway. Hence, we can assume, without loss of generality, that
they are all drawn on the top page. Consequently, a word corresponding to a crossing-free
perfect matching cannot contain 4-3 as a subword.

Let f(n) be the number of words of length n over the alphabet {1, 2, 3, 4} not containing
4-3 as a subword. Then we get the recurrence f(n) = 4f(n − 1) − f(n − 2) because we
can extend all allowed words of length n − 1 by one of the four letters as a prefix and then
subtract all words that start with the subword 4-3 but are fine afterwards. Solving this
recurrence leads to the claimed asymptotic bound of O((2 +

√
3)n).

11 12 13 14 22 23 24 33 34 44

Figure 3 The 10 different letters corresponding to a vertex in a Hamiltonian cycle.

For the case of a crossing-free Hamiltonian cycle we can argue similarly. We give the main
ideas in the following. Since each vertex is incident to exactly two edges, each crossing-free
Hamiltonian cycle corresponds to a word over the alphabet {11, 12, 13, 14, 22, 23, 24, 33, 34, 44}
of 10 letters; see Figure 3. Assuming again, without loss of generality, that all edges between
consecutive vertices are drawn on the top page, we can exclude 16 subwords of length 2 in this
case. In addition, the subword 22-11 is not allowed for n > 2 because it would form a cycle
of length 2. Some of those 17 forbidden subwords can interact with each other. However, if
g(n) is the number of allowed words of length n, a careful analysis leads to the recurrence
g(n) = 9g(n − 1) − 7g(n − 2) − g(n − 3) and consequently to the claimed asymptotic bound
of O((4 +

√
17)n).

3 Discussion of the result

The bounds in this submission are ongoing work. We are currently working on improving
them and have several ideas on how to also exclude subwords of length greater than 2. Also
note that these bounds do not only hold for straight-line chain constructions but also, for
example, for crossing minimal 2-page-book drawings (like the one in Figure 1(b)), which
have significantly fewer crossings than any straight-line drawing of Kn can have [1].
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1 Introduction

For embedded graphs, there are many measures to determine their similarity. Buchin et al.
[5] survey several of the measures and which properties of a metric they fulfil. Many of these
measures have already been analysed with regard to their properties and their computational
complexity, but little attention has been paid to the interrelationships between the different
measures. However, in order to decide on a suitable graph measure for an application, it is
also interesting to know how these relate to each other. We therefore examine how several of
these measures are related, in particular which of these measures are "stronger" in the sense
that the distance under a weaker measure is always smaller than that of the stronger one.

In this paper, we consider undirected graphs embedded in R2. Let G = (VG, EG) and
H = (VH , EH) be two such undirected graphs with vertices embedded as points in R2 that
are connected by crossing free straight-line edges. In the following we first define the distance
measures we are interested in, which are the strong and weak graph distance, traversal
distance, and contour tree distance. We are interested in these particular measures, because
they all take into account both the geometry and the topology of the graph, and are based
on similar notions of mapping/matching parts of the graphs. In the next section, we then
show relations between these, some of which hold only on paths or trees.

The strong resp. weak graph distance is based on the (strong resp. weak) Fréchet distance
[3]. The idea of this graph distance is to map one of the graphs onto a subgraph of the other
that is as similar as possible. For this, a mapping s : G → H is called a graph mapping if it
maps each vertex v ∈ VG to a point s(v) on an edge of H, and it maps each edge {u, v} ∈ EG

to an arbitrary simple path from s(u) to s(v) in the embedding of H.

▶ Definition 1. We define the directed [weak] graph distance δ⃗[w]G as

δ⃗[w]G(G, H) = inf
s:G→H

max
e∈EG

δ[w]F (e, s(e)),

where s ranges over graph mappings from G to H, δ[w]F denotes the [weak] Fréchet distance,
and e and its image s(e) are interpreted as curves in the plane. The undirected graph
distances are δ[w]G(G, H) = max(δ⃗[w]G(G, H), δ⃗[w]G(H, G)).

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Comparison of Graph Distance Measures

The directed graph distances are not symmetric. For example, if G is a subgraph of H, the
graph distance from G to H is zero, while the distance from H to G can be arbitrarily large.

Another measure defined by Alt et al. in [2] is the traversal distance. It is a natural
extension of the weak Fréchet distance, in which two paths are traversed simultaneously.
Depending on the application, it can be useful to traverse only one graph completely and
only a part of the second (directed traversal distance).

▶ Definition 2. We call a mapping g : [0, 1] → G that is surjective and continuous, a traversal
of G. A continuous (but not necessarily surjective) mapping h : [0, 1] → G is called partial
traversal of G. We define the directed traversal distance as

δ⃗T (G, H) = inf
g,h

max
t∈[0,1]

∥g(t) − h(t)∥,

where g ranges over all traversals of G and h over all partial traversals of H.

There are two different ways to define a symmetric variant of the directed traversal
distance. One is to take the maximum of both directed values, as defined in [5], the
symmetric traversal distance δT (G, H) = max{δ⃗T (G, H), δ⃗T (H, G)}. We introduce another –
arguably more natural – symmetric variant, in which both graphs are traversed completely.

▶ Definition 3. We define the complete traversal distance as

δcT (G, H) = inf
g,h

max
t∈[0,1]

∥g(t) − h(t)∥,

where g and h range over all traversals of G and H, respectively.

The contour tree distance was motivated by the computation of the Fréchet distance of
surfaces and introduced by Buchin, Ophelders and Speckmann [4]. Later it was naturally
extended by [5] to a distance on embedded graphs. In it connected areas of the two graphs
are matched. For this, we first define two classes of matchings between G and H. A matching
τ ∈ M(G, H) has the following properties:
1. τ is a connected subset of G × H,
2. τ(x) is a nonempty, connected subset of H for each x ∈ G, and
3. τ−1(y) is a nonempty, connected subset of G for each y ∈ H.

We introduce the class of weak matchings wM(G, H), where τ(x) and τ−1(y) do not have
to be connected. Then the [weak] contour tree distance is defined as the largest distance
between two matched points in an optimal [weak] matching.

▶ Definition 4. We define the [weak] contour tree distance d[w]C as

δ[w]C(G, H) = inf
τ∈[w]M(G,H)

sup
(x,y)∈τ

∥x − y∥2,

where ∥x − y∥2 is the Euclidean distance between the embeddings of x and y.

2 Comparison of the Graph Distance Measures

So far it is known for paths that δwF ∗ ≤ δwG ≤ δG ≤ δF , where δwF ∗ denotes the weak Fréchet
distance without boundary restriction [1]. It was also argued for graphs that δ⃗T ≤ δ⃗wG ≤ δ⃗G.
Here, we show the following relationships, the proofs of which can be found in the full version.
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δwF∗<δwG δwG<δG δG<δC δC<δF

Figure 1 Example of paths where the graph distance measures differ.

▶ Theorem 5. Let P and Q be paths. Then

δwF ∗ = δT = δcT = δwC ≤ δwG ≤ δG ≤ δC ≤ δF .

In Figure 1 example paths are given where the graph distances differ for all inequalities.

▶ Theorem 6. Let G and H be embedded trees, then δwG ≤ δG ≤ δC .

▶ Theorem 7. Let G and H be embedded graphs, then δcT = δwC .

3 Conclusion and open questions

We have shown a strict order for the considered distance measures on paths, some of which
can be transferred to trees and graphs. An open question is how the two different symmetric
variants of the traversal distance relate to each other. Obviously, δT ≤ δcT , since every
complete traversal of both graphs is also a traversal of one graph and a partial traversal of the
other graph. But it is not yet clear whether they are equivalent. Furthermore, the question
of how the graph distance and contour tree distance relate to each other on arbitrary graphs
is still open, since the proof for trees uses the uniqueness of paths between matched points.
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Abstract
We introduce a new balanced separator theorem for unit-disk graphs involving two shortest paths
combined with the 1-hop neighbours of those paths and two other vertices. This answers an open
problem of Yan, Xiang and Dragan [CGTA ’12] and improves their result that requires removing the
3-hop neighbourhood of two shortest paths. Our proof uses very different ideas, including Delaunay
triangulations and a generalization of the celebrated balanced separator theorem of Lipton and
Tarjan [J. Appl. Math. ’79] to systems of non-intersecting paths.
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1 Introduction

In graphs, a separator is a small set of vertices whose removal splits the graph into smaller
components. Separators are very useful for designing divide-and-conquer algorithms. Planar
graphs are well-known for admitting good separators. The first separator theorem for planar
graphs was due to Lipton and Tarjan [13], who proved that every planar graph on n vertices
admits a separator of size O(

√
n) that can be computed in O(n) time. Since then, many

variants of separator theorems have been proven for planar graphs [13, 14, 7, 9, 17, 12, 4].
Some of these results can be naturally extended to graphs with bounded genus [6, 8] or to
minor-free graphs [2, 10, 18].

Separator theorems for geometric intersection graphs A geometric intersection graph is
an undirected graph where each vertex corresponds to a geometric object, and edges indicate
which pairs of objects intersect each other. One common type of geometric intersection graph
is the unit disk graph, which arises in modeling wireless communication. Such graphs also
appear in applications such as VLSI design. These graphs have been extensively studied in
the computational geometry community. It is natural to ask whether separator theorems
apply for geometric intersection graphs. For unit disk graphs, many different separators
exist, such as line separators [3] and clique separators [5]. When the unit disks have low
ply (the number of disks intersecting any given point), good separators are also known to
exist [15, 16].

Shortest path separators The usefulness of a separator does not necessarily solely depend
on the number of vertices. An excellent example of good separators with large size are
shortest path separators, i.e. separators consisting of a constant number of shortest paths.

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 A New Separator Theorem for Unit Disk Graphs

u

x

y

vv

Figure 1 (Left) The points u, v, x, y ∈ S are drawn with circles of radius 1/2. The unique
shortest path tree in G with starting vertex u has a crossing edge. (Right) Two reflected copies
results in a graph where no planar shortest path tree exists, regardless of starting vertex.

Thorup showed that every planar graph admits a separator consisting of at most two shortest
paths [17]. Similar results have been proven for minor-free graphs [1]. Shortest path separators
have been used extensively in distance-related problems in planar graphs, such as distance
oracles [17, 11] and planar emulators [4].

A natural question is whether shortest path separator theorems can be adapted to unit
disk graphs. Naively, such separators cannot exist, as the clique on n vertices is realizable as
a unit disk graph for which no such separator can exist. However, we can strengthen the
separator by also removing vertices in the k-neighborhood of the shortest path, i.e. vertices
that are at a distance of at most k from the shortest path. Yan, Xiang and Dragan [19]
proved that every unit disk graph admits a shortest path 3-neighborhood separator, that is,
by removing two shortest paths and all vertices in the 3-hop neighborhood of any vertex on
the shortest path, the remaining graph is disconnected with every component having size at
most 2/3 of the vertices of the original graph. They left open the question of whether there
exists a shortest path 1-neighborhood separator.

Our results We answer the open question of Yan, Xiang and Dragan [19] in the affirmative.
We show that every graph has a 1-neighborhood separator. In particular, it suffices to
only remove the 1-neighborhood of two shortest paths plus the 1-neighborhood of two other
vertices. While the proof of Yan, Xiang, and Dragan manipulates crossings in the intersection
graph, our proof uses very different ideas involving paths in Delaunay triangulations and
a generalization of the shortest path separators of Lipton and Tarjan to sets of weakly
non-crossing paths in a triangulated planar graph that may be of independent interest.

▶ Theorem 1. Every unit disk graph admits a shortest path 1-neighborhood separator.

2 An initial approach and sketch of techniques

To illustrate the difficulty in obtaining our result let us consider one approach to construct
shortest path 1-neighborhood separators for a unit disk graph G = (V, E). To do so, we will
make two overly wishful assumptions (that would be great if they always held).

Let T be a shortest path tree of G starting at a fixed vertex s ∈ V . We will wishfully
assume that T is planar (assumption 1); that is, no two edges of T cross. Next, we will
assume that we can triangulate T to get a graph GT (assumption 2) such that every edge of
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the triangulated graph GT is an edge in G. Now, we can use the shortest path separator
theorem of Lipton and Tarjan [13], on GT with spanning tree T to get a Jordan curve C

that is a separator for GT . This is because all edges uv ∈ E have the property that for all
other edges crossing the line segment between u and v the crossing edge has at least one end
point adjacent to either u or v (we call this property cross-dominating). Thus the cycle C is
in fact also a shortest path 1-neighborhood separator of G. We address these assumptions:

1. Our first assumption was that we could find a shortest path tree T of G that is planar.
This is not always the case, there are examples (see Figure 1) of unit disk graphs G where
no planar shortest path tree exists. Instead, we will construct a non-crossing path system
Π consisting of pseudo-shortest paths, i.e. for every vertex u ∈ V we will find a path
Π[u] to s such that Π[u] consists only of vertices on the shortest path between u and s,
as well as 1-neighbors of the shortest path. We show an extension of the planar separator
algorithm to find a balanced separator in path systems of planar graphs.

2. Our second assumption was that we could triangulate the tree T to get a graph GT
such that every edge of the triangulation is an edge in G. We show that instead, we
can prove all edges of the Delaunay triangulation has the cross-dominating property as
well, and furthermore we show that we can construct Π using only edges of the Delaunay
triangulation of the centers of the disks of G.
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Abstract
We propose an extension of the Hausdorff distance from metric spaces to spaces equipped with
asymmetric distances, such as the Bregman divergences. This includes the popular Kullback–Leibler
divergence (relative entropy). As an experiment we use the new divergence to compare collections of
predictions returned by different machine learning models trained using relative entropy.
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1 Introduction

Given a metric space (Ω, d), the Hausdorff distance, dH(P, Q), between two sets P, Q ⊂ Ω is

inf



r ≥ 0 : P ⊂

⋃

p∈P

B(p, r) and Q ⊂
⋃

q∈Q

B(q, r)



 ,

where B(x, r) = {ω ∈ Ω : d(x, ω) ≤ r} is the ball of radius r centered at x.
The above defines the distance between these two sets and has been used in many

computational applications such as computer vision [3]. We generalize this definition to
spaces equipped with asymmetric distances, in particular with Bregman divergences.

F

Ωx y

DF (x‖y)

Figure 1 Visualization of a Bregman divergence construction for a one-dimensional domain.

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Bregman Hausdorff Divergences

q

q

Figure 2 Left: primal Itakura–Saito balls. Right: primal generalized Kullback–Leibler balls.

2 Background on Bregman divergences

Let Ω ⊂ Rd be an open convex set. A function of Legendre type [8] is a function F : Ω → R
that is differentiable and strictly convex. We additionally require that lim

x→∂Ω
∥∇F (x)∥ = ∞,

provided ∂Ω is nonempty.
Given a function F of Legendre type, the Bregman divergence generated [1] by F is

a function DF : Ω × Ω → R. The divergence between x and y is the difference between F (x)
and the best affine approximation of F at y evaluated at x, or simply

DF (x∥y) = F (x) − (F (y) + ⟨∇F (y), x − y⟩). (1)

See Figure 1 for an illustration. These divergences are often asymmetric and we refer to
DF (x∥y) as the divergence in the direction from x to y.

Prominent examples of Bregman divergences are the squared Euclidean, Kullback–Leibler
(KL) [5], and the Itakura–Saito (IS) [4] divergences. The KL and IS divergences are
information measures connected with Shannon entropy and Burg entropy respectively, and
both have seen success as loss functions to be minimized in machine learning [2, 6].
Bregman balls. Due to the asymmetry, one can define two types of Bregman balls [7]. We
start with the primal Bregman ball of radius r ≥ 0 centered at q which is defined as

BF (q; r) = {y ∈ Ω : DF (q∥y) ≤ r}. (2)

Namely, it is the collection of points with Bregman divergence measured from the center not
exceeding r. See Figure 2 for illustrations. Primal Bregman balls have a particularly nice
geometric interpretation: given a light source at point (q, F (q) − r), the primal ball BF (q; r)
is the illuminated part of the graph of F projected vertically onto Ω.

The dual Bregman ball of radius r ≥ 0 centered at q is defined as

B′
F (q; r) = {y ∈ Ω : DF (y∥q) ≤ r}. (3)

Visualized geometrically, we first shift the tangent plane at (q, F (q)) up by r. The dual
Bregman ball B′

F (q; r) is the portion of the graph of F below this plane projected vertically
onto Ω. Both geometric interpretations are illustrated in Figure 3.
Bregman–Hausdorff divergence. Let us extend the metric definition of the Hausdorff
distance to the setting of Bregman divergences. Given P, Q ⊂ Ω and a Bregman generator
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Figure 3 Geometric interpretation of primal (left) and dual (right) Bregman balls in dimension 1.

F , we define the primal Bregman–Hausdorff divergence as

HF (P∥Q) = inf
{

r ≥ 0 : Q ⊂
⋃

p∈P

BF (p, r)
}

(4)

and the dual Bregman–Hausdorff divergence as

H
′
F (P∥Q) = inf

{
r ≥ 0 : P ⊂

⋃

q∈Q

B′
F (q, r)

}
, (5)

naming them by the type of the balls involved. Despite being a natural extension, the above
definitions appear to be new.

As explained in detail in ??, the KL–Hausdorff has an information-theoretical interpreta-
tion and is expressed in bits. We are especially interested in comparing the predictions on
training and test data arising from two models of different quality. We were also curious
about a comparison with the IS–Hausdorff divergence.

3 Experiments

Models and data sets. We train two neural networks, M1 and M2, on a classification task
on the CIFAR100 dataset, achieving 80.22%, and 71.74% test accuracy respectively. From
each model, we produce two sets of predictions: (trni, tsti), for i ∈ {1, 2}. The networks are
trained to minimize the total KL divergence, and the predictions live in the standard simplex
of dimension 99 equipped with the KL divergence. For comparison, we also generate dataset
△u randomly distributed on this standard simplex.

Analysis. Table 1 confirms that the KL–Hausdorff divergences capture that M1 is a
better model. Technically a larger loss of coding efficiency is incurred if M1 were to be
approximated by M2. Similarly, a much larger loss is incurred if the uniform distribution
is used to approximate tst1. More generally, the large gap for HIS(tst1∥△u) shows that
the choice of loss in training significantly effects the resulting geometry. In contrast, as the
standard simplex is bounded under the Euclidean distance but unbounded under the other
divergences, the standard Hausdorff distances are all close.
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4 Bregman Hausdorff Divergences

Table 1 Bregman Hausdorff divergences.

(tst1∥trn2) (tst2∥trn1) (trn2∥trn1) (trn1∥trn2) (tst1∥△u)

HKL 4.03b 4.52b 4.34b 4.03b 22.65b
HIS 1,144.24 1,998.38 2,360.05 1,309.63 63.77
H ′

IS 34,008.59 1,739,646,377.75 14,801,113.43 584,772.40 364.21
HSqEuc 0.26 0.24 0.23 0.27 11.84

4 Summary

In application to machine learning, the Bregman–Hausdorff divergence is an interpretable
measure for comparing model predictions. Prompted by the above experiments, we ask how
the choice of divergence affects the estimate of intrinsic dimension of data. We also mention
natural usage in measuring the level of noise introduced in the input, by computing the
Bregman–Hausdorff divergence between the original and perturbed predictions. The new
definition also opens up interesting algorithmic questions.
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